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In-flight particle sensors for thermal spraying are used for real-time monitoring of coating manufacture.
However, such tools do not offer facilities to tune the processing parameters when the monitoring reveals
fluctuations or instabilities in the thermal jet. To complete the process control, any diagnostic sensors need
to be coupled with a predictive system to separate the effect of each processing parameter on the in-flight
particle characteristics. In this work, a nonlinear dynamic system based on an artificial neural network
(ANN) model is proposed to play this role. It consists of a method that relates the processing parameters to
the particle emitted signal characteristics recorded with a DPV2000 (TECNAR Automation, St-Bruno, QC,
Canada) optical sensing device. In such a way, a database was built to train and optimize an ANN structure.
The in-flight particle average velocity, temperature, and diameter of an alumina-13wt.%titania feedstock
were correlated to the injection and power parameters. Correlations are discussed on the basis of these
predictive results.

Keywords artificial neural network, in-flight particle characteris-
tics, optical sensor, processing parameters

1. Introduction

Optical sensors are the most adequate diagnostic tools to
monitor the thermal spray process (Ref 1, 2). Developments in
this field have permitted recording the two-dimensional (2-D)
profiles of in-flight particle characteristics (Ref 3). These char-
acteristics influence both the coating properties (Ref 3-5) and the
operating conditions (Ref 3, 6). They constitute, hence, efficient
indicators of an “ideal” interface to control the process (Ref 7, 8).
Furthermore, the particle-plasma interactions represent the
unique stage where on-line control may be operated, since the
other stages require off-line analyses. However, diagnostic tools
such as the integrated optical monitoring systems diagnose the
particle state variations but do not offer opportunities to tune the
operation conditions. To do so, the sprayer needs a feedback
system requiring at least correlations between each processing
parameter and each measured characteristic. These feedback
models encounter several difficulties due to the versatility of the
process (Ref 9) and the difficulty of decoupling the temperature
and velocity effects (Ref 10).

In this work, a model was implemented by considering an
application on Al2O3-13wt.%TiO2 clad powder of −53 +15 µm
particle size distribution. This powder was sprayed (standoff
distance of 125 mm, Sulzer-Metco F4 gun, Wohlen, Switzer-
land) under various air plasma conditions that mainly influence

the in-flight particle characteristics; that is, the power and injec-
tion conditions were varied. These conditions considered the
following processing parameters: arc current intensity, argon
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List of Symbols

ANN artificial neural network
MLP multilayer perceptron
D average in-flight particle diameter, m
Dinj stand-off distance to the gun centerline axis,

mm
Ez quadratic error between predicted and correct

output response
f [ ] activation function or transfer function
f �[ ] first derivative of activation function
I arc current intensity, A
ID feedstock injector internal diameter, mm
l(xi), O(xi,y) input signal of neuron xi from layer x
O( yi) output signal of neuron yi from layer y
O(zk) resulted output signal at neuron zk

Pnet net plasma power, W
R2 correlation factor (−)
rk correct output response at neuron k
t epoch, cycle, or iteration
T average in-flight particle temperature, °C
V average in-flight particle velocity, ms
VAr argon primary plasma gas flow rate, SLPM
VCG argon carrier gas flow rate, SLPM
VH2 hydrogen secondary plasma gas flow rate,

SLPM
w(xi,yj) weight between neuron xi from the layer x and

neuron yj from the layer y
� partial derivation operator
� gradient operator
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primary plasma gas, hydrogen secondary plasma gas, feedstock
carrier gas flow rate, injector standoff distance, and injector in-
ternal diameter. The other processing prameters were kept con-
stant to reference values. For each condition, the average particle
velocity, temperature, and diameter were recorded at the center

of the particle flow stream using an optical sensor (DPV2000,
Tecnar, St. Bruno, QC, Canada). A database formed from these
experimental sets permitted via a neural network (Fig. 1) each of
the considered processing parameters to be related to each of the
particle characteristics.

Fig. 1 ANN implementation in the APS process
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2. In-Flight Particle Characteristics
Measurement

Most open, close, and feedback control systems use sensors
to monitor fluctuations in the plasma jet and measure their direct
effects on the in-flight particle characteristics (Ref 3, 11). Sev-
eral methods are implemented to measure the particle velocity,
temperature, and diameter, such as pyrometry, particle image
velocimetry (PIV), and particle shape image (PSI) techniques
(Ref 3, 11, 12). The DPV2000 system is one of the most popular
devices based on pyrometric analysis and was used in this study
to monitor the spray process. In this system, a sensing head en-
sures the collection of the particle characteristics. It is mounted
on a computer-aided displacement device allowing radial dis-
placements at a given spray distance. This sensor collects ther-
mal radiations of particles (i.e., approximated as gray bodies) as
they pass in the measurement volume of about 0.1 mm3 (Ref 3).
A dual-response signal is detected by a photo mask and allows
the calculation of three parameters.

The particle velocity is calculated by dividing the distance
between the images of the two photo mask slits in the measure-
ment volume by the time of flight between the two responses.
The measurement range is from 30 to 1200 m/s, depending
on the selected photo mask. The particle temperature is deter-
mined by considering the ratio of the signals (i.e., radiance) re-
corded by two wavelength detectors. The typical range is from
1000 to 4000 °C. The gray body theory and constant emis-
sivity are assumed for all particles. Finally, the particle diameter
can be established considering either the proportionality to the
particle response signal or the time integral of the complete sig-
nal. The typical range of measurement is between 10 and 300
µm. A calibration procedure is required to correct the diameter
coefficient due to the emissivity sensitivity to the material nature
and spray conditions. This calibration can be expressed as:

new coefficient = original coefficient �

�average in-flight particle diameter

average powder size distribution �
(Eq 1)

An auto centering routine was considered to record the in-flight
particle characteristics at the maximum of the particle flow.
Thus, the y position varied from one condition to another, vary-
ing from 4 to 13 mm apart from the gun centerline axis.

3. Simulation Model

3.1 Artificial Neural Networks

Previous studies demonstrated the applicability of fuzzy
logic and artificial intelligence concepts to thermal spray pro-
cess modeling (Ref 13, 14). The artificial neural network (ANN)
model belongs to dynamic system models, which are applied to
recognize physical properties and optimize manufacturing pro-
cesses. In addition, it offers wide possibilities of dynamic con-
trolling, that is, determining which action must be taken to re-
produce expected coating in-service properties. The process

modeling principle is presented hereafter, and its mathematical
basis is given in Appendix 1.

The ANN model is based on the discrimination of complex
correlations between the process input (I) and the process output
(O) in a large, but simple, mathematical operation processed
through units called neurons. These processing elements act as
decision cells “feeding” the results of the “within operations” to
the other neurons by means of connections. The strength of a
given connection is quantified by a number, which is termed as
a weight. An optimized neuron structure considers the adequate
weight population that best describes the I/O correlations (Fig.
2). This population is discovered by a training procedure to learn
the I/O examples from experimental sets. The way the weights
are tuned is called a paradigm (Appendix 1). The most popular
and powerful paradigm used to train ANN is the back propaga-
tion paradigm (Ref 15-17) developed between 1974 and 1985.
This paradigm needs multiple I/O examples to achieve the ANN
structure optimization (i.e., the adequate network setup param-
eters, the smallest neuron number and the optimal neuron popu-
lation). The paradigm used in this study is a “faster” variation of
standard back propagation (Ref 17) (Appendix 1), also called
“quick” back propagation.

3.2 Model Implementation

Before implementing any model dealing with process con-
trol, special care is needed in selecting the I/O categories. In the
case of the thermal spray process, several authors reported a sub-
division of the process based on chronological events occurring
during the process (Ref 1, 18-20) with the evidence being that
each stage of the process deals with different I/O categories
(Ref 20). For example, Moreau (Ref 1) reported three major
zones: heat generation, particle heating and acceleration, and
coating buildup. These studies agree in considering the prevail-
ing role of in-flight particle characteristics as an efficient indi-
cator of the parameter stabilities (Ref 21). Furthermore, these
characteristics proved to directly influence the coating micro-
structure and the physical-mechanical properties (Ref 4). In the
following model, these characteristics; namely average velocity,
temperature, and diameter—are considered as the output units
(Table 1). From this set of output units, the particle flow rate was
not considered and it was kept constant. Each of these charac-
teristics is labeled with one neuron since they constitute real
variables.

The adequate conversions (which are also valid for the input
parameters) are taken into account to set each input between 0
and 1:

x =
x − xmin

xmax − xmin
(Eq 2)

where x is a real value of an input or output unit and xmin and xmax

are the limits of each x unit determined from the physical limi-
tations of the process and not from the maximum and minimum
values of the experimental sets.

This set of particle characteristics is mainly influenced by
two categories of processing parameters, namely the power and
the feedstock injection parameters. The particle drag coefficient,
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the amount of heat transfer, and the acceleration depend on the
plasma jet properties (i.e., gas density, velocity, thermal conduc-
tivity, etc.) (Ref 22, 23). These latter properties are directly re-
lated to the arc-gas properties and the torch design (Ref 24). In
addition, powder and powder-feed variables highly influence
the particle trajectory and their residence time in the jet (Ref 7).
As previously mentioned, the selected processing parameters
belonging to the considered categories were the current intensity
(I), the argon primary gas flow rate (VAr), the hydrogen secondary
gas flow rate (VH2), the carrier gas flow rate (VCG), the injector
standoff distance (Dinj), and the injector internal diameter (ID). One

neuron described the real values of I, VAr, VH2, and VCG parameters,
whereas a classification appeared to be necessary to deal with the
values related to Dinj and ID. In fact, it is not possible
to vary these parameters continuously. Thus, they are considered
as categories to be selected. The ANN methodology allows such
description requirement: x neurons for 2x categories (Fig. 1).

Table 1 summarizes the selected parameters used as input
and output units for this study.

Based on these selected parameters, a simple multilayer per-
ceptron (MLP) was built considering a feed forward architecture
(see Appendix, Fig. A1). Several studies have described the rela-

Fig. 2 Connective scheme of a simple ANN
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tive simplicity of the neural networks required to process such
problems (Ref 25, 26). The choice of the network architecture is
justified by the nature of the correlations that have to be discov-
ered. Roughly speaking, these correlations can be considered for
this application as a problem of function approximation in the
parameter space. Consequently, the feed forward architecture
seems to be the most suitable scheme (Ref 27).

Before optimizing the considered ANN system, prior knowl-
edge of the nature of the correlations has to be considered to fix
the required layers between the I/O categories. For the case of a
linear system, generally one layer is sufficient. In the case of
thermal spray process, these correlations are mostly nonlinear
(Ref 4), and two layers are required.

3.3 ANN Optimization Process

The ANN optimization process was already presented in a
previous study (Ref 28). Here is a brief description of the re-
quired steps.

Step one consists of building the database. It takes into ac-
count the physical limits of each process parameter (i.e., a maxi-
mum plasma gas flow rate for example) and the trivial situations
where no generation of plasma (arc current intensity equal to
zero for example) or material feed (a carrier gas flow rate equal
to zero for example) is possible. However, experimental sets are
required to train the neural net to recognize the physical corre-
lations. The parameters were varied individually from reference
conditions to the limits values (Table 1).

In a second step, a network is set up. This is described by
several parameters listed in Table 2. Each parameter was
adapted to meet the requirements of the study; the optimization
of such parameters was undertaken considering a part of the da-
tabase, which is named the validation category. A previous study
presented different configurations for each parameter and the
related results (Ref 28).

Training and test procedures are performed in step three. This
is an essential step of the optimization process. Both training and
test procedures are processed with different I/O examples re-

Table 2 Neural network setup and the related parameters

Category Parameter Description Optimized values

Architecture Connection scheme between neurons Normal feed-forward (suitable for most applications)
Layer definition Hidden layer number Number of neuron layers between I/O categories 2 (value required for non-linear systems)

Learning rule (a) Paradigm used to tune the weight values in each
hidden layer and output layer

Quick propagation (a fast variation of standard back
propagation)

Number of neurons Nodes required to relate the I/O categories 10 in the first layer and 8 in the second layer (obtained
at the end of the optimization process)

Input function Statement of how the result of a layer feed a given
neuron. It concerns the hidden and output layers

Dot product between neuron outputs

Input preprocessing Data conversion if applicable. It concerns only the
input layer

None

Transfer function Nonlinear conversion of the neuron outputs sum Sigmoid (most suitable since it compresses the neuron
input when large weight negative of positive values
are reached)

Network error
type

Energy of the optimization process Mean absolute error between calculated and
experimental outputs (mostly recommended)

Training and
testing

Batch size Determination of the number of samples processed
before the weight update

1

Input set Determination of either single test or training pass
to be tested

Training set as input

Maximum iterations First of the stopping criteria. This fixes the number
of weight updates

920

Tolerance Second cumulative criterion with the cycle number 0.001 (it was not reached)
Sequencing Determination of the order of training and testing Training + test pass before weight update

(a) Dependent on the network architecture

Table 1 ANN variables. Parameter values in bold type refer to the reference condition.

Layer Variable Symbol Value
Number of

neurons

Input Arc current intensity, A I 350, 530, 750 1
Argon gas flow volume, SLPM VAr (40,0)(a), (40,4), (40,8), (40,8), (40,10) 1
Hydrogen flow volume, SLPM VH2 (40,14), (22.5,7.5), (37.5,12.5) 1
Carrier gas flow rate, SLPM VCG 2.2, 3.2, 4.4 1
Injector diameter, mm ID 1.5, 1.8, 2.0 2
Injector standoff distance, mm Dinj 6, 7, 8 2

Output Average particle velocity, m/s V … 1
Average particle temperature, °C T … 1
Average particle diameter, µm D … 1

(a) (VAr, VH2)
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quiring a subdivision of the database into training and test cat-
egories, respectively.

The final step is the generalization procedure. It assumes that
the results of the validation, training, and test procedures permit

generalization of the results of the studied correlations. In a first
step the experimental and predicted values are compared. Then,
correlations are extrapolated for intermediate processing param-
eter values. Figures 3 to 6 present these correlations.

Fig. 3 Predicted particle (a) velocity, (b) temperature, and (c) diameter
as a function of the arc current intensity

Fig. 4 Predicted particle (a) velocity, (b) temperature, and (c) diameter
as a function of the hydrogen content
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4. Results and Discussion
4.1 Preliminary Analysis

Experimental in-flight particle characteristics obtained with
the DPV2000 sensor at the center of the particle flow stream

exhibit a relatively high scatter, especially concerning the diam-
eter measurements. From this point of view, the standard devia-
tions are 37 m/s (14% of the average value), 205 °C (8% of the
average value), and 18 µm (32% of the average value), respec-

Fig. 5 Predicted particle (a) velocity, (b) temperature, and (c) diameter
as a function of the argon content

Fig. 6 Predicted particle (a) velocity, (b) temperature, and (c) diameter
as a function of the carrier gas flow rate
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tively for V, T, and D. Leblanc et al. (Ref 8) reported variations
of the same magnitudes of about 200 °C and 30 m s−1 on tem-
perature and velocity during 45 h of spraying in the case of a
zirconia powder having a comparable size distribution (i.e., −45
+22.5 µm). This scatter was essentially attributed in that case to
electrode wear. After 68 h of spraying at the time of measuring,
the net power exhibited strong fluctuations with the conse-
quence of increasing the cold particle fraction in the plasma jet
(Ref 7, 9). In the current study, the mean values give, however,
a satisfactory tendency comparable to the results of the predicted
curves.

The predicted curves are the results of the whole database
treatment. Thus, they do not represent actually fitting procedure
results but rather correlation sets. To generalize the proposed
network structure, at least three experimental points for each
condition were compared with the predicted tendencies.

Figures 3 to 6 show the effects of the studied parameters on V,
T, and D characteristics. Generally speaking, the results point
out, particularly, the very significant effects of VAr and VH2 on V
and T for the studied conditions. Guilemany et al. (Ref 5) found
the same effects in the case of a stainless steel powder. The D
characteristic results are more difficult to analyze. The mean di-
ameter was found for most cases to be outside the considered
distribution range. This result arises mainly because the high
scatter of the experiments produced no meaningful variations on D.
However, some correlations were reported on the D variations,
especially those resulting from models showing that gen-
erally D decreases with an increase of T and V characteristics
(Ref 10, 29).

Correlations discovered by ANNs result from a compromise
between the representativeness of the data points in the process
parameter space and the learning criteria. This is the reason why
the predicted correlations presented in Fig. 3-6 lay below, in
these specific cases, the experimental validation points. Of
course, closer data points would permit a better local description
of a given correlation, but its generalization to the whole process
parameter space is not possible anymore, reducing in such a way
the interest of implementing such a methodology.

4.2 Influence of the Arc Current Intensity on
Particle Characteristics

Figure 3 shows the predicted evolutions of the average par-
ticle velocity, temperature, and diameter as a function of the arc
current intensity.

Parameters T and V exhibit a parabolic increasing depen-
dence with the arc current intensity. Variable D shows the same
dependence, but with a slight decrease for high current values.
Linear dependences were reported between V and T character-
istics (Ref 7) and between each of V and T characteristics con-
sidering the net or the effective power (Ref 28, 30).

These results demonstrate quantitatively the effect of the
electrical input power in producing optimal particle melting.
The improvement of the in-flight characteristics with increasing
electric power was also reported by several authors for different
materials (Ref 1, 7, 10, 31, 32).

In the case of the studied conditions, the predicted results
showed the following relationships:

T�°C� = 12 � 10−3Pnet�W� + 2101; R2 = 0.95* (Eq 3)

V�m�s� = 2.6 � 10−3Pnet�W� + 206; R2 = 0.97 (Eq 4)

T�°C� = 4.61 � V�m�s� + 1152; R2 = 0.99 (Eq 5)

V�m�s� = 4.23 � 10+6D��m� + 60; R2 = 0.92 (Eq 6)

It is pointed out that in Eq 6, D represents the mean diameter of
particle. Thus, this correlation does not represent the result of an
aerodynamic drag model (Ref 10) but the effect of the size dis-
tribution shift.

The relatively low correlation factor in Eq 6 is due to the
decrease of particle diameter for high arc intensity values, as
shown in Fig. 3(c).

4.3 Influence of the Hydrogen Content on
Particle Characteristics

Figure 4 shows the predicted evolutions of the average par-
ticle velocity, temperature, and diameter as a function of the hy-
drogen content (VH2).

As for the case of the current, these curves show an increase
of the characteristics with an increase of VH2. It is well known
that hydrogen improves the velocity, temperature, and enthalpy
of the plasma jet (Ref 33) and so the heat and momentum transfer
to particles (Ref 34). These, in turn, improve the characteristics
(Ref 19, 20, 32).

In the case of the studied conditions, the predicted results
showed the below relationships:

T�°C� = 50.5 � 10−3Pnet�W� + 1396; R2 = 0.99 (Eq 7)

V�m�s� = 4.2 � 10−3Pnet�W� + 181; R2 = 0.98 (Eq 8)

T�°C� = 11.96 � V�m�s� − 760; R2 = 0.99 (Eq 9)

V�m�s� = 3.45 � 10+6D��m� + 105; R2 = 0.99 (Eq 10)

One has to note that, from a general point of view, these results
better fit the assumed linear relationships compared with the I
parameter.

4.4 Influence of the Argon Content on Particle
Characteristics

Figure 5 shows the predicted evolutions of the average par-
ticle velocity, temperature, and diameter as a function of the ar-
gon content.

Increasing the argon flow rate (VAr) increases the particle ve-
locity but decreases the temperature. This result is qualitatively

*R2 represents the coefficient of multiple determinations, or correlation
factor. It calculates the percentage of the data points that could be ex-
plained by the relationship. R2 = 1 means that all points are described
exactly by the interpolation curve; i.e., every experimental point would
lie on the calculated curve.
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in agreement with previous works (Ref 10, 31, 32) and is directly
related to an increase of the momentum transmitted from the
plasma jet to the particles, leading to a decrease of their resi-
dence time in the hot core of the jet.

The predicted V results show a parabolic relationship,
whereas a linear dependence of V with VAr parameter was re-
ported in Ref 30.

It seems that D is not significantly influenced by the VAr pa-
rameter.

In the case of the studied conditions, the predicted results
show the following relationships. The point corresponding to
VAr = 22.7 SLPM and VH2 = 7.5 SLPM was not considered be-
cause it exhibited singular values due to spray conditions apart
from “regular” spray conditions; that is, the gun was operated at
the margin of its capabilities.

T�°C� = −3 � 10−6Pnet
2�W� + 119 � 10−3Pnet�W�

+ 1109; R2 = 1 (Eq 11)

V�m�s� = −4 � 10−6Pnet
2�W� + 175 � 10−3Pnet�W�

− 1628; R2 = 1 (Eq 12)

Table 3 V, T, and D average values derived from the
surface decision of the Dinj and ID neurons used to classify
each of the considered categories

Input Output

Parameter
Neuron

#1
Neuron

#2 V, m/s T, °C D, µm

Dinj, mm 6 1 0 297 ± 16 2521 ± 70 60 ± 6
7 1 1 283 ± 13 2487 ± 28 53 ± 2
8 0 0 299 ± 17 2543 ± 78 61 ± 7

ID, mm 1.5 0 0 291 ± 18 2577 ± 82 53 ± 2
1.8 1 0 298 ± 19 2571 ± 99 53 ± 5
2.0 1 1 292 ± 25 2446 ± 220 45 ± 4

Fig. 7 Neuron attributes for classification: case of the injector stand-off distance (Dinj)
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T�°C� = 0.015 � V2�m�s� − 7.24 � V(m�s� + 3290; R2 = 1
(Eq 13)

V�m�s� = −21 � 10+12D2��m� + 2153 � 10+6D��m�

− 54,959; R2 = 0.99 (Eq 14)

4.5 Influence of the Carrier Gas Flow Rate on
Particle Characteristics

Figure 6 shows the predicted evolutions of the average par-
ticle velocity, temperature, and diameter as a function of the car-
rier gas flow rate (VCG).

Fig. 8 Contour map of the Dinj input unit values showing the dispersion of the (a) V, (b) T. (Continued on next page)
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The predicted results show that V and T increase with an in-
crease of VCG. The same effects were reported by Döring et al.
(Ref 10) for yttria stabilized zirconia, in the case, however, of a
lower carrier gas flow rate range. The V, T, and D evolutions
show a continuous increasing effect, compared for example to
the previous parameters (i.e., I, VAr, and VH2). For V and T, it
seems very likely that the optimal injection conditions are higher
than the considered range. In the case of the studied conditions,
the predicted results showed the correlations:

T�°C� = 3.2 � V�m�s� + 1545; R2 = 0.98 (Eq 15)

V�m�s� = 4.32 � 10+6D��m� + 46; R2 = 0.95 (Eq 16)

4.6 Influence of the Injector Standoff Distance on
Particle Characteristics

To deal with the results of the classification provided by the
optimized network structure for each considered injector diam-
eter, the inputs of the injector standoff distance were varied in
the limits of their domain. The decision surface separating each
category could be drawn from these variations. For example, in
the case of the injector standoff distance of 6 mm indexed by 10
(i.e., neuron No. 1 = 1 and neuron No. 2 = 0), the first neuron
value was varied in the range (0.5-1) and the second one in the
range (0-0.5) (Fig. 7). These values fed the optimized network
structure and the outputs were then averaged. Figure 8 shows the
distribution of the V, T, and D values for several input values.
Table 3 shows the predicted mean particle velocity, temperature
and diameter and the corresponding standard deviations, as a
function of the Dinj parameter.

Counter plots show qualitatively that V, T, and D increase in
the same direction at most of the input values. This is confirmed
by the average values displayed in Table 3.

With Dinj equal to 7 mm, V, T, and D were the lowest deter-
mined values. These results are controversial since the effect of
Dinj may produce a monotonous variation of V and T parameters:
V and T increase when Dinj decreases (i.e., when the injector tip
is closer is closer to the jet core) and inversely. However, the
average values are close in the range that states on the favor of a
minor effect, for the reference condition at least.

In the case of the studied conditions, the predicted results
showed the following correlations:

T�°C� = 3.1 � V�m�s� + 1612; R2 = 0.92 (Eq 17)

V�m�s� = 1.96 � 10+6D��m� + 180; R2 = 1 (Eq 18)

In the case of the T-V correlation, a second-order polynomial
function furnished a better approximation.

4.7 Influence of the Injector Diameter on Particle
Characteristics

As in the case of the Dinj parameter, the same analysis for the
injector diameter (ID) was assumed; that is, for each category of
injector standoff distance, the inputs of the injector diameter
were varied in the limits of their domain. The classification of
the three studied categories permitted calculation of the surface
contours of the V, T, and D distributions as a function of the input
at neuron No. 1 and neuron No. 2 (Fig. 9). Table 3 summarizes
the average values obtained for each category.

Fig. 8 cont. Contour map of the Dinj input unit values showing the dispersion of the (c) D results through the domains of the considered categories (6,
7, and 8 mm)
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The counter plots show the same correlations as in the case of
the parameter Dinj: a significant coupled effect between V and T
and a lower dependence with D. However, average values are not
conclusive, first due to the high scatter in the experimental ex-
amples and second due to the low scatter in the predicted results.
The latter showed an optimal working point at ID = 1.8 mm. In

fact, an increase of ID should be very likely accompanied by
a decrease of the injection velocity, which in turn can modify
V and T, depending on the position of the particles in the plasma
jet.

In the case of the studied conditions, the predicted results
showed the following correlations:

Fig. 9 Contour map of the ID input unit values showing the dispersion of the (a) V, (b) T
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T�°C� = 26 � V2�m�s� − 15,086 � V�m�s� + 2 � 106;
R2 = 1 (Eq 19)

V�m�s� = −1.86 � 10+12D2��m� + 182 � 10+6D��m�

− 4151; R2 = 1 (Eq 20)

5. Conclusions

An ANN model was implemented to study the relationships
between some injection/power processing parameters and in-
flight particle characteristics. This model required a database
obtained with experiments that used the DPV2000 sensor.

High scatter on V, T, and D characterized the measurements
due to the experimental conditions. The D results were not so
discriminative due to the narrow size distribution of the powder
used in this study.

A global behavior based on the sampling of the space param-
eter correlations permitted decoupling the effect of each param-
eter and relating them with representative curves for each the
particle characteristic.

Major effects were discriminated, especially those related to
power parameters. The ANN architecture predicted, for ex-
ample, the V-T dependence for each specific case. These effects
qualitatively agree with results implementing design of experi-
ment methods reported by several authors (Ref 32, 35, 36).
However, the nonlinearity of the correlations is more pro-
nounced in the case of ANN methodology.

The most controversial predicted results are relative to the ID
and Dinj parameters. In fact, the classification into categories,

which was assumed to represent each parameter value, seems to
be suitable, but the network setup did not consider specific pa-
rameters for such units (such as, for example, the input prepro-
cessing, the activation function, etc.). It is believed that a more
adaptive parameter would allow better results.

ANN seems to be a suitable tool to be incorporated in an
online control system coupled with a diagnostic tool. A robust
database can be used to implement the basis of the control. As
the decoupled correlations are recognized for each processing
parameter in the ANN structure, it is easier to anticipate for such
a system the appropriate combinations to correct parameter ab-
errations. Therefore, an associated automaton can decide which
of the equivalent solutions is the best one guaranteeing the pro-
cess stability.
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Appendix

A1. Mathematical Background of Feed Forward
Neural Networks

Following the illustration given in Fig. A1 and A2, the input
to a processing element is given by:

Fig. 9 cont. Contour map of the ID input unit values showing the dispersion of the (c) D results through the domains of the considered categories (1.5,
1.8, and 2.0 mm)
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I�xi� = w�xi,yj�O�yj� = O�xi,y� j = 1,Ny (Eq A1)

where w(xi,yi) is the weight between neuron xi from the layer x
and neuron yj from the layer y and O(yi) is the output signal of
neuron yi from layer y.

The output signal of each processing parameter is then
given by

O�xi� = f �I�xi�� (Eq A2)

where f [I(xi)] is called the activation function (the transfer func-
tion) operating a nonlinear transformation on the input of neuron
xi from layer x. If the activation function depends on the neuron
xi, f becomes fxi. This transformation is required because the
sum of the output signals is linear, and this is not suitable to
discover nonlinear correlations.

At the beginning of the training procedure, each weight is
initialized to an arbitrary value. In the case of this study, this
value was equal to 1. After propagating the output signal of each
neuron until it reaches the output layer, the first output vector is
obtained. It is compared with the real output given by the I/O
example. For that purpose, an error function is calculated based
on the quadratic error. It is firstly calculated at the output layer to
tune the corresponding weights, and it is secondly back propa-
gated to the internal layers to tune the other weights (Fig. A3).
The magnitude and direction of the weight update is given, in
this study, by the quick propagation algorithm.

A2. Quick Propagation Paradigm

This paradigm relies on the minimization of the quadratic
error that can be written at the output layer, using Einstein nota-
tion:

Ez =
1

2
�rk − O�zk��

2 k = 1,Nz (Eq A3)

where rk is the correct output response at neuron k from the out-
put layer z. O(zk) is the resulted output signal at neuron zk from
the output layer z and for the considered weight population.

Based on the error expression, the error gradient of the wjk

weight estimation is expressed then as:

�Ez�yj,zk� =
�Ez

�w�yj,zk�
(Eq A4)

where zk and yj relate to neurons in the z output layer and in the
backward layer y, respectively.

Using the chain rule, Eq A4 can be rewritten as:

E�Ez�yj,zk� =
�Ez

�I�zk�
�

�I�zk�

�w�yj,zk�
(Eq A5)

Replacing then Eq A1, A2, and A3 into A5 leads to:

�Ez�yj,zk� = f��I�zk���rk − O�zk�� �
��w�yj,zk�O�yj��

�w�yj,zk�
= f��I�zk���rk − O�zk�� � O�yj� (Eq A6)

where f � refers to the first derivative and O(yj) to the output
signal at neuron j from layer y.

Now, this last expression can be calculated because all terms
are known.

To compute the error gradient at a given internal connection,
the same formulation holds to:

�Ey�xi,yj� =
�Ey

�O�yj�
�

�O�yj�

�I�yj�
�

I�yj�

�w�xi,yj�
(Eq A7)

Fig. A1 A typical MLP (multilayer perceptron) showing the architec-
ture of feed-forward structure. Neurons in white are enlarged in Fig. A2

Fig. A2 Principle of connection in a feed forward network and the
related quantities
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Considering the same expressions as Eq A1 and A2 for the layer
y leads to:

�Ey�xi,yj� =
�Ey

�O�yj�
� f�[I(yj)]�O(xi) (Eq A8)

The last partial derivative of Eq A8 can be expressed as:

�Ey

�O�yj�
=

�Ey

�I�zk�
�

�I�zk�

�O�yj�
k = 1,Nz (Eq A9)

Introducing into Eq A9 the weight population between layer y
and layer z leads to:

�Ey

�O�yj�
=

�Ey

�I�zk�
�

��w�yj,zk�O�yj��

�O�yi�
=

�Ez

�I�zk�
� w�yj,zk� k = 1,Nz

(Eq A10)

Replacing the derivative term by its expression Eq A6 leads to:

�Ey

�O�yj�
= f��I�zk���rk − O�zk�� � w�yj,zk� k = 1,Nz (Eq A11)

Thus,

�Ey�xi,yj� = f��I�zk���rk − O�zk�� � w�yj,zk� � f��I�yj�� � O�xi�
k = 1,Nz (Eq A12)

This last equation expresses the error gradient between the neu-
ron xi from layer x and the neuron yj from layer y as function of
the error at the output layer k.

As the error gradient at any connection is known giving the
difference rk − O(zk) at the output layer the weight update can be
performed. In the case of the quick propagation paradigm, it is
given as:

�w�xi,yj�
t =

�Ey�xi,yj�
t

�Ey�xi,yj�
t−1 − �Ey�xi,yj�

t
� �w�xi,yj�

t−1 (Eq A13)

where the superscript t refers to the epoch.
It can be seen from Eq A13 that the weight modification re-

lies on the approximation of the error E. In fact, the quick propa-
gation paradigm adapts the acceleration and the direction of the
weight modification to minimize the time needed to find an op-
timal weight set. This is why it is considered faster than the stan-
dard back propagation supervised learning.

Fig. A3 Logic flow chart of the back propagation paradigm implemented to train an ANN
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